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Review of the Synthetic Control Method

The Synthetic Control Method

The synthetic control method (SCM), proposed by Abadie and
Gardeazabal (2003, AER), is a powerful tool for estimating average
treatment effects (ATE), and gains increasing popularity in fields such
as statistics, economics, political science, and marketing.

"The synthetic control approach ... is arguably the most important
innovation in the policy evaluation literature in the last 15 years."

—Athey and Imbens (2017, JEP)
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Review of the Synthetic Control Method

Setting

We code the treatment status of unit i using the binary variable Di ,
so Di = 1 if i is treated and Di = 0 otherwise.
We adopt the potential outcomes framework proposed by Rubin
(1974, JEP). Let Y1i and Y0i be random variables representing
potential outcomes under treatment and without treatment,
respectively, for unit i , and the realized outcome is defined as
Yi = DiY1i + (1− Di)Y0i .
Let Xi be a (d × 1) vector of pretreatment predictors.
Then, we observe (Yi ,Xi) = (Y1i ,Xi) for n1 treated units and
(Yi ,Xi) = (Y0i ,Xi) for n0 control units. Combining these observables,
we obtain the pooled dataset, {(Yi ,Di ,Xi)}n

i=1, with n = n0 + n1.
For simplicity, we reorder the observations so that the n0 control units
come first.
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Review of the Synthetic Control Method

The Synthetic Control Method

The quantity of interest is the treatment effect on the treated
units, ∆i = Y1i − Y0i , for i = n0 + 1, . . . , n, and the average
treatment effect is given by

∆ =
1

n1

n∑
i=n0+1

(Y1i − Y0i).

The difficulty in estimating ∆ is that {Y0i}n
i=n0+1 are not

observable, which has been a key issue for researchers since the paper
by Rubin (1974).

Now, the SCM solves this problem by assuming that a combination of
control units may approximate the characteristics of the treated unit
well, and this combination can be used to estimate {Y0i}n

i=n0+1.
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Review of the Synthetic Control Method

The Synthetic Control Method
Concretely, for each treated unit i = n0 + 1, . . . , n, we can construct a
synthetic control, which is a combination of control units represented by a
n0 × 1 vector of weights W ∗

i = (W ∗
i ,1, . . . ,W ∗

i ,n0
)′. Given a set of weights,

W ∗
i , the synthetic control estimator of Y0i and ∆ can be written as

Ŷ0i =
n0∑

j=1

W ∗
i ,jYj (1)

and

∆̂ =
1

n1

n∑
i=n0+1

Yi −
n0∑

j=1

W ∗
i ,jYj

 =
1

n1

n∑
i=n0+1

Yi −
1

n0

n0∑
j=1

a∗j Yj ,

where a∗j = n0
∑n

i=n0+1 W ∗
i ,j/n1.

Question: How to choose the weights {W ∗
i ,j}, n1 × n0 parameters?
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Review of the Synthetic Control Method

The Synthetic Control Method

The SCM proposes to choosing W ∗
i ,j such that the synthetic control

resembles the corresponding treated unit i in terms of the values of the
predictors of the outcome variable. Mathematically speaking, the SCM
seeks the solution to the following question:

min
Wi∈Rn0

Xi −
n0∑

j=1

Wi ,jXj

⊤

V

Xi −
n0∑

j=1

Wi ,jXj


s.t. Wi ,1 ≥ 0, . . . ,Wi ,n0 ≥ 0, and

n0∑
j=1

Wi ,j = 1, (2)

where V is a d × d matrix with the elements on the diagonal being all
positive and reflecting the relative importance for each predictor.
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Review of the Synthetic Control Method

Remarks

The SCM has been widely applied in empirical research in economics
and other disciplines. The paper by Abadie (2021, JEL) presents a
thorough discussion on the advantages and the feasibility of the SCM.

In the SCM, the weights are restricted to be non-negative and sum to
one, which is called as the convex hull constraint. This constraint
might not be needed nor necessarily satisfied in many cases. Several
modifications have been proposed to relaxing this constraint (see,
e.g., Doudchenko and Imbens (2016, WP), Li (2020, JASA), Kellogg
et al. (2021, JASA)).
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Review of the Synthetic Control Method

Remarks

For more econometric/statistical theories and inferences on the SCM
and its variants, the reader is referred to the paper by Li (2020) and
the special section in Journal of The American Statistical Association
in the last issue of 2021 on synthetic control methods edited by
Abadie and Cattaneo (2021, JASA), which covers some new research
directions on synthetic control estimation and inference, including the
following four aspects:

1 factor models and matrix completion methods proposed by Agarwal et
al. (2021), Athey et al. (2021) and Bai and Ng (2021),

2 time series analysis approach studied by Ferman (2021) and Masini and
Medeiros (2021),

3 extensions, modifications and generalizations investigated by Abadie
and L’Hour (2021), Ben-Michael, Feller and Rothstein (2021) and
Kellogg et al. (2021), and

4 uncertainty quantification and inference explored by Cattaneo, Feng
and Titiunik (2021), Chernozhukov, Wüthrich and Zhu (2021), and
Shaikh and Toulis (2021).
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Review of the Synthetic Control Method

Remarks

It is easy to see from (1) that the SCM assumes implicitly that the
prediction function of Y0i given Xi is a linear or close to linear
function of Xi , which might not be satisfied in real applications.

Also, as pointed out by Abadie (2021), the optimization problem in
(2) might not have a unique solution. Indeed, there are an infinite
number of solutions.

Furthermore, it is important to note that for any particular data set
there are not ex ante guarantees on the size of the differences
Xi −

∑n0
j=1 Wi ,jXj in (2). When these differences are large, the papers

by Abadie, Diamond and Hainmueller (2010, JASA) and Abadie
(2021) recommend against the use of synthetic controls because of
the potential for substantial biases.
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Review of the Synthetic Control Method

Remarks
When n0 is large, the computing burden to find the "optimal" weights
in (2) is troublesome. To see this issue, in our empirical study, we will
report the computing time based on our computing facility.

In addition to the above computing issue, sparsities might exist
among {Wi ,j}n0

j=1. To address these challenges, the paper by Abadie
and L’Hour (2021) propose a synthetic control estimator, termed as
penalized synthetic control method (Pen-SCM), that penalizes the
pairwise discrepancies between the characteristics of the treated units
and of the corresponding synthetic control units. That is to add the
following penalty term into (2)

λ

n0∑
j=1

Wi ,j ||Xi − Xj ||2,

which is different from the conventional LASSO type methods
imposing the penalty on parameters.
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A Quasi Synthetic Control Method for Nonlinear Models

QSCM

Quasi Synthetic Control Method
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A Quasi Synthetic Control Method for Nonlinear Models Model Setup

Model Setup

Assume we observe n units, some of which are exposed to the treatment
or intervention of our interest. For each unit i = 1, . . . , n, denote

Di = {0, 1} as the binary treatment variable
Y1i and Y0i as the potential outcomes under treatment and no
treatment, respectively
Xi ∈ Rd as the d × 1 vector of pre-treatment predictors of Y0i

1

Under the potential outcomes framework, the observed outcome Yi
satisfies Yi = DiY1i + (1− Di)Y0i . Therefore, we obtain a pooled data set
{Yi ,Di ,Xi}n

i=1.

1d might be very large.
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A Quasi Synthetic Control Method for Nonlinear Models Model Setup

Model Setup

Denote n1 and n0 as the number of the treated observations and the
untreated observations, respectively. For simplicity, we reorder the data so
that the n0 untreated observations come first.

The quantity of our interest is the average treatment effect on the treated
(ATT):

∆ = E (∆i) = E (Y1i − Y0i), i = n0 + 1, . . . , n. (3)

Still, the difficulty in estimating ∆i and ∆ is that Y0i is not observable for
i = n0 + 1, . . . , n.
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A Quasi Synthetic Control Method for Nonlinear Models Model Setup

Model Setup

To estimate the unobservables {Y0i}n
i=n0+1, we assume that the

prediction function based on the conditional expectation of Y0i given
Xi , denoted by m(x) = E (Y0i |Xi = x), is in an index form as
m(x) = m(β⊤

0 x) = m(z), where z = β⊤
0 x ∈ R.2

Then, for i = n0 + 1, . . . , n,

E (Y0i) = E [E (Y0i |Xi)] = E [E (Y0i |Zi)]

where Zi = β⊤
0 Xi for a given β0, so that the estimation of m(z) is

one-dimensional, and the so-called curse of dimensionality in a
nonparametric smoothing can be avoided.

2This covers a linear model as an special case. Of course, when d is small, one can
estimate directly m(x) by using a nonparametric method. Therefore, this case is much
easier.
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A Quasi Synthetic Control Method for Nonlinear Models Identification and Estimation Procedures

Identification

From the above discussion, our method needs to identify both the
unknown index vector β0 and the function m(z). In fact, it is a
two-step procedure.

Clearly, given z0 = β⊤x , the function m(z) can be identified
nonparametrically under certain assumptions.

To identify β0, we introduce the following assumption.
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A Quasi Synthetic Control Method for Nonlinear Models Identification and Estimation Procedures

Identification of the First Step

Denote mc(x) = E
[
Y0j |Xj = x

]
for j = 1, . . . , n0 and mt(x) = E

[
Y0j |Xj = x

]
for i = n0 + 1, . . . , n.

Assumption 1

Assume that mc(x) = mt(x) = m(z), where z = β⊤
0 x and β0 ∈ B, where

B = {β ∈ Rd : β1 > 0, ||β||2 =
∑d

k=1 β
2
k = 1}. Furthermore, assume that

the second order derivative of m(z) is continuous.

By Assumption 1, we can identify β0 using data {Yj ,Xj}n0
j=1.
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A Quasi Synthetic Control Method for Nonlinear Models Identification and Estimation Procedures

Estimation of the First Step: A Brief Review
As introduced before, E (Y0i |Xi = x) = m(β⊤x) is identical to the
well-known single index model (SIM), which assumes Y0i = m(β⊤Xi) + εi ,
where E (εi |Xi) = 0 and β is called the parametric index vector.

Estimation of β is very attractive both in theory and practice.
The papers by Powell et al. (1989, ECTA) and Hädle and Stoker
(1989, JASA) propose the average derivative estimation (ADE)
method, which involves estimating a high-dimensional density
function and its derivative.
The paper by Ichimura (1993, JoE) proposes the semiparametric least
squares (SLS) estimation. But the minimization is very difficult to
implement.
The paper by Xia et al. (2002, JRSSB) proposes the minimum
average variance estimation (MAVE) method for the dimension
reduction problem, which can be applied to the SIM directly.
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A Quasi Synthetic Control Method for Nonlinear Models Identification and Estimation Procedures

Estimation of the First Step: the MAVE Method
Under the least squares loss,

β0 = arg min
β̃∈Rd

E [Y − E (Y |β̃⊤X )]2. (4)

In our setting, we have data {Yj ,Xj}n0
j=1. Motivated by the local linear

smoothing technique, the sample analogue of (4) can be written as

β̂MAVE = arg min
β̃∈Rd

n0∑
j=1

{min
aj ,bj

n0∑
i=1

[Yi − aj − bj β̃
⊤(Xi − Xj)]

2wij}

= arg min
β̃∈Rd

aj ,bj

n0∑
j=1

n0∑
i=1

[Yi − aj − bj β̃
⊤(Xi − Xj)]

2wij (5)

where aj = m(β̃⊤Xj), bj = ∂m(u)/∂u|u=β̃⊤Xj
, wij = Kh(β̃

⊤(Xi − Xj))

with Kh(v) = K (v/h)/h and K (·) being a kernel function as well as h
being the bandwidth.

Ying Fang (XMU) A Quasi Synthetic Control Method for Nonlinear Models With High-Dimensional Covariates20 / 69



A Quasi Synthetic Control Method for Nonlinear Models Identification and Estimation Procedures

Estimation of the First Step: the MAVE Method

The MAVE method solves (5) iteratively. First, given β̃, optimize (5)
with respect to aj and bj , and then, given aj and bj , optimize (5)
with respect to β̃.

During the iteration, the weights wij are updated simultaneously
accroding to the latest value of β̃.

The paper by Xia (2006, ET) derives the asymptotic distribution of
the estimator of β0 based on the MAVE, and shows that it can
achieve the information lower bound in the semiparametric sense.
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A Quasi Synthetic Control Method for Nonlinear Models Identification and Estimation Procedures

The Second Step Estimation

Under Assumption 1, for any z , we can also derive the Nadaraya-Watson
estimator of m(z):

m̂(z) =
n0∑

j=1

m̂(z) =
n0∑

j=1

cj,h(z)Yj , (6)

where cj,h(z) = Kh(Zj − z)/
∑n0

l=1 Kh(Zl − z), Kh(u) = K (u/h)/h, and
K (u) is a kernel function, and h is the bandwidth.

Consequently, we can derive an infeasible3 estimator of Y0i :

Ỹ0i = m̂(Zi) =
n0∑

j=1

cj,h(Zi)Yj , i = n0 + 1, . . . , n. (7)

3This estimator is infeasible because it is based on the unknown quantities {Zj}n0
j=1
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A Quasi Synthetic Control Method for Nonlinear Models Identification and Estimation Procedures

The Second Step Estimation

Then, the infeasible estimator of ∆, ∆̃ is given by

∆̃ =
1

n1

n∑
i=n0+1

Yi −
n0∑

j=1

cj,h(Zi)Yj

 =
1

n1

n∑
i=n0+1

Yi−
1

n0

n0∑
j=1

aj,hYj , (8)

where aj,h = ah(Zj) and

ah(z) =
1

n1

n∑
i=n0+1

Kh(Zi − z)
[
1

n0

n0∑
l=1

Kh(Zi − Zl)

]−1

.

Clearly, (8) is similar to (1) and aj,h in (8) is similar to a∗j in (1). Therefore,
our method is called quasi synthetic control method (QSCM). Note that
the key difference between SCM and QSCM is that the SCM is only valid
for linear models but the QSCM can be accommodate nonlinear models.
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A Quasi Synthetic Control Method for Nonlinear Models Identification and Estimation Procedures

Summary of the Estimation Procedure

We summarize our estimation procedure based on above discussion.
Step 1. Using data {Yj ,Xj}n0

j=1, estimate the index vector β0 by the
MAVE method, and denote the estimator as β̂.

Step 2. Set Ẑj = β̂⊤Xj for j = 1, . . . , n0 and Ẑi = β̂⊤Xi for
i = n0 + 1, . . . , n.

Step 3. Plug {Ẑj}n0
j=1 and {Ẑi}n

i=n0+1 into (8), and compute the
feasible estimator of ∆ as

∆̂ =
1

n1

n∑
i=n0+1

[
Y1i −

n0∑
j=1

ĉj,h(Ẑi)Yj

]
=

1

n1

n∑
i=n0+1

Y1i −
1

n0

n0∑
j=1

âj,hYj , (9)

where âj,h = âh(Ẑj) =
1
n1

∑n
i=n0+1 Kh(Ẑi − Ẑj)[

1
n0

∑n0

l=1 Kh(Ẑi − Ẑl)]
−1.
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A Quasi Synthetic Control Method for Nonlinear Models Asymptotic Property

Notations

To derive the asymptotic property of the proposed estimator in (9), some
assumptions are needed. Before presenting these assumptions, we first
introduce some notations.

Let fc(z) be the density of Zj for j = 1, . . . , n0 and ft(z) be the
density of Zi for i = n0 + 1, . . . , n.
Define C1 to be the support of Zj for j = 1, . . . , n0 and C2 to be the
support of Zi for i = n0 + 1, . . . , n.
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A Quasi Synthetic Control Method for Nonlinear Models Asymptotic Property

Assumptions

Assumption 2

{Y0j ,Y1j ,Xj}n0
j=1 for the control group and {Y0i ,Y1i ,Xi}n

i=n0+1 for the
treated group are independent and identically distributed, respectively.
Assume that E (|Ydi |s) < ∞ for d = 0, 1 and some s > 2. We also assume
that C2 ⊆ C1 and fc(z) ≥ M1 > 0 for z ∈ C2.

Assumption 3

Assume that the second order of derivative of r(z) is bounded, where
r(z) = ft(z)/fc(z), the ratio function to characterize the distributional
changes of the single index between the treated and control units.a

aIndeed, r(z) is interpreted as “acceptance probability" in rejection sampling instead
of “importance re-weighting", or covariate shift in the machine learning literature,
especially in marketing science.
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A Quasi Synthetic Control Method for Nonlinear Models Asymptotic Property

Assumptions

Assumption 4
The kernel function K (·) is symmetric, bounded and positive. Further
assume that the first derivative of K (·) is continuous.

Assumption 5
Assume that n0 h2 → ∞, n0 h4 → 0, and n1/n0 → η as n0 → ∞, where
0 < η < ∞.

Assumption 6
Assume that for any estimate of β0, β̂ admits the following expression

√
n0

(
β̂ − β0

)
=

1
√n0

n0∑
j=1

ϕ(Xj ,Yj) + op(1)
d−→ N(0,Σβ0) (10)

for some function ϕ(·) with variance Σβ0 =Var(ϕ(Xj ,Yj)) for j = 1, . . . , n0.
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A Quasi Synthetic Control Method for Nonlinear Models Asymptotic Property

Asymptotic Property

Let εj = Y0j − E (Y0j |Xj) for j = 1, . . . , n0. Define σ2
1 = Var[Y1i − m(Zi)] for

i = n0 + 1, . . . , n, σ2
2 = Var[r(Zj)εj ] for j = 1, . . . , n0, and σ2

3 = δ⊤a Σβ0
δa with

δa = E
[
m′(Zi)X⊤

i
]

for i = n0 + 1, . . . , n, where m′(z) is the first order derivative
of m(z), and Σβ0 is given in Assumption 6. Define Σ23 =Cov(ϕ(Xj ,Yj), r(Zj)εj).

Theorem 1

Under Assumptions 1 - 6, we have

√
n1

(
∆̂−∆

)
d→ N(0, σ2

∆),

where σ2
∆ = σ2

1 + η
[
σ2
2 + σ2

3 + 2 δ⊤a Σ23

]
.
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A Quasi Synthetic Control Method for Nonlinear Models Asymptotic Property

A Remark on Asymptotic Property

It follows from Theorem 1 that the asymptotic variance consists of four
terms.

The first term in σ2
∆ stands for the variance of Y1i − m(Zi).

The second term is for charactering the variation for estimating Y0i .
The third term σ2

3 is the variation carried over from the estimation of
β.
The last term depicts the correlation between the first step and the
second step.

This is typical for a two-stage procedure as addressed in Cai, Das, Wu and
Xiong (2006, JoE). Also, one can see that obtaining a consistent estimate
of σ2

∆ is not a straightforward task due to its complicated form of
involving several terms. However, a Bootstrap procedure can overcome
possibly this difficulty.
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A Quasi Synthetic Control Method for Nonlinear Models Bootstrap Inference

Bootstrap Procedure

To facilitate an easy inference, we propose the following (hybrid)
Bootstrap procedure to estimate σ2

∆.
Step 1. Given {Yj ,Xj}n0

j=1 and {Yi ,Xi}n
i=n0+1, estimate the treatment

effect as ∆̂.

Step 2. Generate the wild Bootstrap sample {(Xj ,Y ∗
j )}

n0
j=1 of the

control group, where Y ∗
j = m̂(β̂⊤Xj) + ε∗j with

m̂(β̂⊤Xj) =
∑n0

l=1 Kh(β̂
⊤Xj − β̂⊤Xl)Yl/

∑n0
l=1 Kh(β̂

⊤Xj − β̂⊤Xl),
ε∗j = [Yj − m̂(β̂⊤Xj)]ξj , and {ξj}n0

j=1 being i.i.d. random disturbances
with mean zero and unit variance.

Step 3. Generate the nonparametric Bootstrap sample
{(X ∗

i ,Y ∗
i )}n

i=n0+1 of the treated group by drawing with replacement
from the original dataset {(Xi ,Yi)}n

i=n0+1.
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A Quasi Synthetic Control Method for Nonlinear Models Bootstrap Inference

Bootstrap Procedure
Step 4. Using the wild Bootstrap sample {(Xj ,Y ∗

j )}
n0
j=1 to re-estimate

the index parameter as β̂∗. Set Ẑ ∗
j = X⊤

j β̂∗ for j = 1, . . . , n0 and
Ẑ ∗

i = (X ∗
i )

⊤β̂∗ for i = n0 + 1, . . . , n. Then, obtain the quasi synthetic
control estimator ∆̂∗ as

∆̂∗ =
1

n1

n∑
i=n0+1

[Y ∗
i −

n0∑
j=1

ĉ∗
j,h(Ẑ ∗

i )Y ∗
j ] =

1

n1

n∑
i=n0+1

Y ∗
i − 1

n0

n0∑
j=1

â∗j,hY ∗
j ,

where
â∗j,h = â∗h(Ẑ ∗

j ) =
1
n1

∑n
i=n0+1 Kh(Ẑ ∗

i − Ẑ ∗
j )

[
1
n0

∑n0
l=1 Kh(Ẑ ∗

i − Ẑ ∗
l )
]−1

.

Step 5. Repeat steps 2 to 4 a large number of times, say, B times to
obtain {∆̂∗(b)}B

b=1. Then σ2
∆ can be estimated as

σ̂2
∆ = n1

B∑
b=1

(∆̂∗(b) − ∆̂)2/(B − 1).
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A Quasi Synthetic Control Method for Nonlinear Models Bootstrap Inference

Bootstrap Theory

Theorem 2

Under the conditions imposed in Theorem 1, conditional on the original
sample {Xj ,Yj}n0

j=1 and {Xi ,Yi}n
i=n0+1 and in probability, one has

√
n1(∆̂∗ − ∆̂)

d→ N(0, σ2
∆),

where σ2
∆ is defined in Theorem 1.
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Variable Selection

Penalized Approach

When the number of predictor variables is large, it is common that sparsity
exists so that it is necessary to discriminate relevant variables from
irrelevant variables, since the inclusion of irrelevant variables may harm
estimation accuracy and model interpretability.

Generally, now we consider a dn0 × 1 vector of covariates X , which means
that the dimension of the covariates changes with the sample size of the
control group n0. That is d0 = d0(n0) = O(nγ

0 ) for some 0 < γ < 1, see
Assumption 10 later on assumption on d0 which depends on n0.

For the ultra-dimensional case that d0 >> n, say, d0 = O(exp(nξ)) for
some ξ > 0, one need to use some screening approach first, such as the
sure independence screening (SIR) method in Fan and Lv (2008, JRSSB),
and then, use a penalized method.
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Variable Selection QSCM With a Diverging Number of Covariates

Penalized Approach

Assume that the dimension of the covariates diverges with the sample size
of the control group and denote it as dn0 . Without loss of generality, we
assume that the first s components of β0 are non-zeros, i.e., β0 is
partitioned to β0,A = (β0,1, . . . , β0,s)

⊤ and β0,AC = (0, . . . , 0)⊤ with
dn0 − s components, where A = {1, · · · , s} and AC = {s + 1, · · · , dn0}.

To select the relevant covariates, we can add a penalty term to the
least-squares-form loss function as

n0∑
j=1

[Yj − m̂(β⊤Xj)]
2 + n0

dn0∑
k=1

pλn0
(|βk |), (11)

where β = (β1, · · · , βdn0
)⊤, m̂(·) is an estimate of the link function m(·),

pλn0
(·) denotes a penalty function and λn0 is the penalty parameter.
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Variable Selection QSCM With a Diverging Number of Covariates

Penalized Approach

For a given β, we can obtain m̂(β⊤Xj) using the local linear
smoothing method. Specifically, we let

(âj , b̂j) = argmin
aj , bj

{ n0∑
l=1

[Yl − aj − bj(β
⊤Xl − β⊤Xj)]

2Kh1(β
⊤Xl − β⊤Xj)

}
,

(12)
where Kh1(v) = K (v/h1)/h1, K (·) is a kernel function and h1 is the

bandwidth. Then we have m̂(β⊤Xj) = âj .

For the penalty function, we choose the SCAD penalty and modify
the objective function in (10) as

β̂SCAD = argmin
β∈B


n0∑

j=1

[
Yj − m̂(β⊤Xj)

]2
+ n0

dn0∑
k=1

pSCAD
λn0

(|βk |)

 .

(13)
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Variable Selection QSCM With a Diverging Number of Covariates

SCAD Algorithm

Step 1. Given data {Yj ,Xj}n0
j=1, calculate the initial estimator β̂(0) by

the MAVE method. Set t = 1.

Step 2. For t ≥ 1, given β̂(t−1), calculate

(â(t−1)
j , b̂(t−1)

j
)
= argmin

aj , bj

{ n0∑
l=1

[
Yl − aj − bj(β̂

(t−1))⊤(Xl − Xj)
]2·

Kh1

(
(β̂(t−1))⊤(Xl − Xj)

)}
.

Step 3. Given â(t−1)
j and b̂(t−1)

j , update the estimate of β0 by letting

β̂(t) = arg min
β∈Bdn0


n0∑

j=1

[
Yj − â(t−1)

j − b̂(t−1)
j (β − β̂(t−1))⊤Xj

]2
+ n0

dn0∑
k=1

pSCAD
λn0

(|βk |)

 .

Ying Fang (XMU) A Quasi Synthetic Control Method for Nonlinear Models With High-Dimensional Covariates36 / 69



Variable Selection QSCM With a Diverging Number of Covariates

SCAD Algorithm

Step 4. Let β̂(t) = sgn(β̂(t)
1 )β̂(t)/∥β̂(t)∥ and t = t + 1. Repeat Steps

2 and 3 until convergence reaches. Finally, let β̂SCAD = β̂(t).

In summary, we can first use (13) to select relevant covariates and obtain
β̂SCAD, then, set Ẑi = β̂⊤

SCADXi for the control group and the treated
group, respectively. Finally, we can estimate the treatment effect using
(9), denoted by ∆̂SCAD.
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Variable Selection QSCM With a Diverging Number of Covariates

Asymptotic Property

To derive the asymptotic property of ∆̂SCAD, we make following
assumptions.

Assumption 7
For j = 1, . . . , n0, Y0j = m(β⊤

0 Xj) + εj , where E (εj |Xj) = 0 and
E (ε4j |Xj) < M for some M > 0.

Assumption 8
Denote β0,−1 = (β0,2, . . . , β0,dn0

)⊤ and define a dn0 × (dn0 − 1) matrix as

Jβ0 =
(−β⊤

0,−1/
√

1−||β0,−1||2
Idn0−1

)
, where Idn0−1 is the order dn0 − 1 identity

matrix. Assume that the smallest eigenvalue of J⊤
β0
ΣJβ0 is larger than a

positive constant c, where

Σ = E
{
[m′(Zj)]

2[E (Xj |Zj)− Xj ][E (Xj |Zj)− Xj ]
⊤
}
.
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Variable Selection QSCM With a Diverging Number of Covariates

Variable Selection Theory

Assumption 9
For j = 1, . . . , n0, the marginal density of β⊤Xj is positive and uniformly
continuous in a neighborhood of β0.

Assumption 10
dn0/n0 h3

1 → 0 and n0 h4
1 → 0 as n0 goes to infinity.

Denote
WSCAD = E

{
m′(β⊤

0 Xj)
2J⊤

β0,A
[E (Xj,A|β⊤

0,AXj,A)− Xj,A][E (Xj,A|β⊤
0,AXj,A)

−Xj,A]
⊤Jβ0,A

}
, where Xj,A = (Xj,1, · · · ,Xj,s)

⊤, and Jβ0 denotes the

s × (s − 1) matrix
(−β⊤

0,A,−1/
√

1−||β0,A,−1||2
Is−1

)
with β0,A,−1 = (β0,2, . . . , β0,s)

⊤.
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Variable Selection QSCM With a Diverging Number of Covariates

Variable Selection Theory

Theorem 3

Under Assumptions 4 and 7 - 10, if the tuning parameter λn0 satisfies
λn0 → 0 and

√
n0/dn0 λn0 → ∞, then, with probability approaching 1, we

have:
(a) Sparsity: β̂SCAD,AC = 0.
(b) Asymptotic representation:

β̂SCAD,A − β0,A =
1

n0

n0∑
j=1

Jβ0,AW −1
SCADJ⊤

β0,Am′(β⊤
0 Xj){Xj,A − E [Xj,A|β⊤

0,AXj,A]}εj

+ op(n−1/2
0 )

:=
1

n0

n0∑
j=1

ϕA(Xj ,Yj) + op(n−1/2
0 ).
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Variable Selection QSCM With a Diverging Number of Covariates

Variable Selection Theory

From Part (b) of Theorem 3, it follows that
√n0(β̂SCAD,A − β0,A)

d→ N(0,Σβ0,A), where Σβ0,A = Var(ϕA(Xj ,Yj)) for
j = 1, . . . , n0. It also indicates that β̂SCAD satisfies Assumption 6. Hence,
according to Theorem 1, we have the following corollary.

Corollary 1

Under the conditions imposed in Theorem 1 and Assumptions 7 - 10, one
has √

n1
(
∆̂SCAD −∆

)
d→ N

(
0, σ2

∆,SCAD
)
,

where σ2
∆,SCAD = σ2

1 + λ
(
σ2
2 + σ2

3,A + 2δa,AΣ23,A

)
, σ2

1 and σ2
2 defined in

Theorem 1, σ2
3,A = δa,AΣβ,Aδ

⊤
a,A, Σβ,A =Var(ϕA(Xj ,Yj)), and

Σ23,A = Cov(r(Zj)εj , ϕA(Xj ,Yj)) for j = 1, . . . , n0.
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Variable Selection QSCM With Ultra-high Dimensional Covariates

Screening Methods

In some real applications, the dimension of the covariates may be much
larger than the sample size, which is termed as ultra-high dimensional
covariates in the literature.

For linear models with Gaussian predictors and responses, Fan and Lv
(2008, JRSSB) proposed the sure independence screening (SIS)
method.
Fan, Feng, and Song (2011, JASA) developed a nonparametric
independence screening method for sparse ultra-high dimensional
additive models.
Li, Zhong and Zhu (2012, JASA) proposed a sure independence
screening procedure based on the distance correlation (DC-SIS).
Zhong et al. (2016, Stat. Sin.) developed a robust DC-SIS procedure
(DCRoSIS) that can be applied to the single index models.
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Variable Selection QSCM With Ultra-high Dimensional Covariates

DC-RoSIS-SCAD Method

When the dimension of covariates is ultra-high, we propose to first apply
the DC-RoSIS procedure to reduce the dimensionality of the covariates,
then, use (13) to estimate β. We denote the ultimate estimator for β0 as
β̂DC-RoSIS-SCAD and the corresponding estimator for ∆ as ∆̂DC-RoSIS-SCAD.

Now, we let FY ,0(y) be the CDF of Yj for the control group, and define
F̂Y ,0(y) = 1

n0

∑n0
j=1 I(Yj ≤ y). Denote Xj =

(
Xj,1, · · · ,Xj,dn0

)⊤. The
implementation of the corresponding DC-RoSIS procedure is summarized
as follows.
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Variable Selection QSCM With Ultra-high Dimensional Covariates

DC-RoSIS Procedure

Step 1. For k = 1, · · · , dn0 , we calculate the sample distance
covariances d̂cov

2
{F̂Y ,0(Yj), F̂Y ,0(Yj)}, d̂cov

2
{Xj,k ,Xj,k} and

d̂cov
2
{Xj,k , F̂Y ,0(Yj)} for the control group. Here the sample distance

covariance of two random variables Uj and Vj is defined as
d̂cov

2
{Uj ,Vj} = Ŝ1 + Ŝ2 − 2Ŝ3, where

Ŝ1 =
1

n2
0

n0∑
j=1

n0∑
l=1

|Uj − Ul ||Vj − Vl |,

Ŝ2 =
1

n2
0

n0∑
j=1

n0∑
l=1

|Uj − Ul | ·
1

n2
0

n0∑
j=1

n0∑
l=1

|Vj − Vl |,

and

Ŝ3 =
1

n3
0

n0∑
j=1

n0∑
l=1

n0∑
q=1

|Uj − Uq||Vl − Vq|.
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Variable Selection QSCM With Ultra-high Dimensional Covariates

DC-RoSIS Procedure

Step 2. For k = 1, · · · , dn0
, calculate the sample distance correlation

ω̂k := d̂corr{Xj,k , F̂Y ,0(Yj)} =
d̂cov{Xj,k , F̂Y ,0(Yj)}√

d̂cov{Xj,k ,Xj,k}d̂cov{F̂Y ,0(Yj), F̂Y ,0(Yj)}
.

Step 3. Keep covariates Xj,k with k ∈ Â := {k : ω̂k ≥ cn−κ
0 , k = 1, . . . , dn0},

where c > 0 and 0 ≤ κ < 1/2 are pre-specified constants.

Using the DC-RoSIS, the number of covariates is reduced from dn0 to |Â|.
Zhong et al. (2016, Stat. Sin.) demonstrated that the DC-RoSIS has the
sure screening property; that is, Pr(A ⊆ Â) → 1 as n0 → ∞. 4

4For the ultra-high dimensional case, the asymptotic property for the proposed ATE
estimator, similar to that in Corollary 1, should be investigated, which is very challenging
and warranted as a future research topic.
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Monte Carlo Simulations

Monte Carlo Simulations
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Monte Carlo Simulations Evaluating QSCM and the Bootstrap Procedure

Simulation Settings

We consider several different data generating processes (DGP).
We set the bandwidth h = 1 ∗ n−1/3

0 and use the Gaussian kernel
K (v) = 1√

2π
exp(−v2/2).

For each setting, the simulation is repeated 500 times.
We use the mean of 500 absolute deviation errors (MADE) and root
mean square error (RMSE) as the main evaluation metrics for
different estimators.

Example 1: For each DGP, we vary the dimension of the covariates d and
the true index vector β as following two cases.

Case I: d = 5 and β0 = (1, 0.7, −0.5, 0.25, 0.8)⊤.

Case II: d = 10 with β0 = (1, 0.7,−0.5, 0.5,−0.75, 0.8,−0.4, 1,−0.2, 0.2)⊤.
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Monte Carlo Simulations Evaluating QSCM and the Bootstrap Procedure

Simulation Settings

We consider the following linear and nonlinear model for the potential
outcomes:

Y (0) = m
(
β⊤X

)
+ ε and Y (1) = Y (0) + 2,

where for k = 1, . . . , d , Xk ∼ U(−
√
2,
√
2) for the treated units and

Xk ∼ N(0, 1) for the untreated units, and ε ∼ N(0, 1). In this example, we
consider two cases: m(u) = u and m(u) = 4 ∗

√
|u + 1|+ u respectively.

Clearly, the true treatment effect is ∆ = 2.
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Monte Carlo Simulations Evaluating QSCM and the Bootstrap Procedure

Example 1: Simulation Results

Table 1: Performance of SCM and QSCM under Example 1.

m(u) = u

(n0, n1) (200,100) (400,200) (800,400)

method RMSE MADE RMSE MADE RMSE MADE

d = 5
SCM 0.1599 0.1287 0.1202 0.0969 0.0950 0.0740

QSCM 0.1297 0.1023 0.0886 0.0710 0.0618 0.0497

d = 10
SCM 0.1592 0.1237 0.1186 0.0957 0.0771 0.0619

QSCM 0.1282 0.1015 0.0891 0.0713 0.0620 0.0498

m(u) = 4 ∗
√

|u + 1|+ u

(n0, n1) (200,100) (400,200) (800,400)

method RMSE MADE RMSE MADE RMSE MADE

d = 5
SCM 0.7781 0.7393 0.8075 0.7865 0.8729 0.8593

QSCM 0.1280 0.0999 0.0870 0.0694 0.0618 0.0491

d = 10
SCM 0.7192 0.6721 0.7864 0.7657 0.8701 0.8594

QSCM 0.1333 0.1046 0.0886 0.0709 0.0624 0.0503
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Monte Carlo Simulations Evaluating QSCM and the Bootstrap Procedure

Example 1: Simulation Results

From the top panel of Table 1, we can see that both methods
perform well with the linear potential outcome model, and our
method is comparable to the SCM.

From the bottom panel of Table 1, where the potential outcome
model is nonlinear, we can see that the SCM is invalid and our
method performs much better.

The finite sample performance of the proposed estimator is well-
behaved in the sense that both the MADE and RMSE are generally
small.

The RMSE decreases as the sample size n1 increases, and the
convergence rate is in line with our expectation.
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Monte Carlo Simulations Evaluating QSCM and the Bootstrap Procedure

Example 1: Simulation Results

Table 2: Coverage rates of the proposed Bootstrap procedure

m(u) = u

(n0, n1) (200,100) (400,200) (800,400)

NCP d=5 d=10 d=5 d=10 d=5 d=10

0.9 0.893 0.884 0.899 0.900 0.892 0.882
0.95 0.944 0.934 0.955 0.956 0.942 0.934
0.99 0.981 0.982 0.994 0.993 0.982 0.986

m(u) = 4 ∗
√

|u + 1|+ u

(n0, n1) (200,100) (400,200) (800,400)

NCP d=5 d=10 d=5 d=10 d=5 d=10

0.9 0.903 0.896 0.891 0.918 0.897 0.886
0.95 0.949 0.942 0.939 0.962 0.944 0.943
0.99 0.990 0.987 0.985 0.991 0.982 0.989
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Monte Carlo Simulations Evaluating QSCM with Variable Selection

Example 2: Simulation Settings

Example 2: For simplicity, we illustrate the performance for
high-dimensional variates, with the same setting as in Example 1 except
that the number of covariates is set as dn0 = ⌊60 ∗ n1/6

0 ⌋. And the true
index vector is set as β0 = (1, 0.7, −0.5, 0.25, 0.8, 0, . . . , 0)⊤.

We set the bandwidth h = 1 ∗ n−1/3
0 and h1 = 1 ∗ n−4/15

0 , and use the
Gaussian kernel.
We use BIC to choose the penalty parameter λn0 .
For each setting, the simulation is repeated 500 times.
We still use MADE and RMSE as the main evaluation metrics for two
different estimators (QSCM and pen-QSCM).
We evaluate the performance of variable selection by the mean of true
positive rate (TPR) and false positive rate (FPR) based on 500
replications.
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Monte Carlo Simulations Evaluating QSCM with Variable Selection

Example 2: Simulation Results

Table 3: Performance of QSCM with variable selection

m(u) = u

QSCM pen-QSCM Variable Selection

(n0, n1) RMSE MADE RMSE MADE TPR FPR

(200, 100) 0.2461 0.1943 0.1303 0.1026 0.9176 0.0260
(400, 200) 0.1198 0.0955 0.0865 0.0687 0.9724 0.0030
(800, 400) 0.0704 0.0561 0.0606 0.0483 0.9996 0.0018

m(u) = 4 ∗
√

|u + 1|+ u

QSCM pen-QSCM Variable Selection

(n0, n1) RMSE MADE RMSE MADE TPR FPR

(200, 100) 0.5958 0.4863 0.1691 0.1191 0.9996 0.0196
(400, 200) 0.1822 0.1424 0.0915 0.0725 1.0000 0.0005
(800, 400) 0.0753 0.0614 0.0633 0.0510 1.0000 0.0001
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Monte Carlo Simulations Evaluating QSCM with Variable Selection

Example 2: Simulation Results

Under both settings, the true positive rate is close to 1 and the false
positive rate is relatively small and tends to 0 as the sample size n0
increases.

Compared with the QSCM estimator without variable selection, the
penalized QSCM estimator behaves better with smaller RMSE and
MADE.
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Monte Carlo Simulations Evaluating QSCM with Variable Selection

Example 3: Simulation Settings

Example 3: For simplicity, we illustrate the performance for ultra-high
dimensional variates, with the same setting as in Example 1 except that
the number of covariates is set as dn0 = 5 ∗ n0. And the true index vector
is set as β0 = (1, 0.7, −0.5, 0.25, 0.8, 0, . . . , 0)⊤.

In the DC-RoSIS procedure, we choose c = 1 and κ = 1/3.
For each setting, the simulation is repeated 500 times.
We still use MADE and RMSE as the main evaluation metrics for
∆̂DC-RoSIS-SCAD.
We evaluate the performance of variable selection by the mean of true
positive rate (TPR) and false positive rate (FPR) based on 500
replications.
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Monte Carlo Simulations Evaluating QSCM with Variable Selection

Example 3: Simulation Results

Table 4: Performance of QSCM with feature screening and variable selection

m(u) = u

DC-RoSIS-SCAD Variable Selection

(n0, n1) RMSE MADE TPR FPR

(200, 100) 0.1312 0.1033 0.8464 0.0056
(400, 200) 0.0890 0.0710 0.8968 0.0014
(800, 400) 0.0609 0.0489 0.9476 0.0005

m(u) = 4 ∗
√

|u + 1|+ u

DC-RoSIS-SCAD Variable Selection

(n0, n1) RMSE MADE TPR FPR

(200, 100) 0.1443 0.1149 0.8724 0.0006
(400, 200) 0.0997 0.0784 0.9116 0.0000
(800, 400) 0.0645 0.0512 0.9560 0.0000
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Monte Carlo Simulations Evaluating QSCM with Variable Selection

Example 3: Simulation Results

Under both settings, the true positive rate is close to 1 and the false
positive rate is relatively small and tends to 0 as the sample size n0
increases.

The RMSE and MADE values are generally small and approximately
decrease at a rate of 1/√n1, as desired.
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Empirical Example
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Empirical Example

Empirical Example

We apply our quasi synthetic control method to evaluate the effect of
a labor market training program in the National Supported Work
(NSW) Demonstration. It was originally analyzed by Lalonde (1986,
AER), and subsequently, by researchers like Dehejia and Wahba
(1999, JASA), Smith and Todd (2005, JoE), and Abadie and Imbens
(2011, JBES).

The NSW program was aimed at improving employment opportunities
for individuals at the margins of the labor market by providing them
with temporary subsidized jobs. It targeted individuals with low levels
of education, individuals with criminal records, former drug addicts,
and mothers who received welfare benefits for several years.
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Empirical Example

Empirical Example

In the original experiment, individuals from the targeted population
were randomly split between a treatment arm and a control arm, and
the quantity of interest is the impact of the participation in the NSW
program on 1978 yearly earnings in dollars for this specific population.

Here, we use the version of the data in Dehejia and Wahba (1999) as
experimental data.5 Based on this experimental data, the ATE
estimate is $1794, which serves as an experimental benchmark in the
literature. For details, see Dehejia and Wahba (1999).

To estimate the effect of NSW program based on observational data,
scholars propose to replace individuals in the control group of the
experimental dataset with observations from the Panel Study of
Income Dynamics (PSID).

5This data are available from Dehejia’s website.
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Empirical Example

Empirical Example

We use the experimental participants and the non-experimental
comparison group from the PSID:

Di = {0, 1}: an indicator for the participation of NSW program.
Yi : 1978 yearly earnings in dollars
Xi : an 10× 1 vector of covariates (age, education, black, hispanic,
married, no degree, earnings in 1974, earnings in 1975, no earnings in
1974, and no earnings in 1975).
There are n1 = 185 treated units and n0 = 2490 control units.
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Empirical Example

Table 5: Summary statistics of 10 covariates.

Experimental data Non-experimental data

Treated (n1 = 185) Control (n0 = 260) PSID (n0 = 2490)

Mean Std Mean Std Mean Std

Covariates
Age 25.82 7.16 25.05 7.06 34.85 10.44
Education 10.35 2.01 10.09 1.61 12.12 3.08
Black 0.84 0.36 0.83 0.38 0.25 0.43
Hispanic 0.06 0.24 0.11 0.31 0.03 0.18
Married 0.19 0.39 0.15 0.36 0.87 0.34
No degree 0.71 0.46 0.83 0.37 0.31 0.46
Earnings in 1974 2095.57 4886.62 2107.03 5687.91 19428.75 13406.88
Earnings in 1975 1532.06 3219.25 1266.91 3102.98 19063.34 13596.95
Unemployment in 1974 0.71 0.46 0.75 0.43 0.09 0.28
Unemployment in 1975 0.6 0.49 0.68 0.47 0.1 0.3

Outcome variable
Earnings in 1978 6349.14 7867.4 4554.8 5483.84 21553.92 15555.35
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Empirical Example

Empirical Example
First, we would like to see if there exists a nonlinear relationship between
the outcome and the index.

Figure 1: Scatterplot of Y0 versus Z in PSID group, together with the lowess
estimate of the unknown function m(·) in the dashed red line with its pointwise
95% confidence interval presented by the shaded area and a least-squares fitting
of m(·) in the solid blue line.
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As in Monte Carlo simulations, we use the Gaussian kernel, and the
bandwidth is selected by cross-validation to minimize the mean
squared error (MSE) of estimating Y0j for the control units.

We compare our quasi synthetic control estimator (QSCM) with a
series of existing estimators:

the conventional synthetic control estimator (SCM)
the penalized synthetic control estimator which minimizes the bias
(Pen. SCM) as in Abadie and L’Hour (2021)
the one-match nearest neighbor matching estimator (1-Matching)
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Table 6: Non-experimental estimates for the NSW data for various methods

Method Benchmark QSCM SCM Pen-SCM 1-Matching

Treatment effect 1794.34 1801.22 2118.61 1881.40 2236.87
Notes: The result for pen-SCM come from Abadie and LHour (2021), and the result for 1-Matching is computed via the R
package Matching by Sekhon and Saarinen (2023).

From Table 6, we can see clearly that our QSCM estimator is
1801.22 is closest to the benchmark.
The conventional SCM estimator is 2118.61, which is substantially
biased, as well as the one-match nearest neighbor matching estimator.
We also compute the standard error of the QSCM estimator using the
hybrid Bootstrap method and the standard error of ∆̂QSCM is 883.50,
which is much smaller than 1725.38, the corresponding standard error
for the 1-Matching estimate as in Abadie and Imbens (2006, ECTA).
Ying Fang (XMU) A Quasi Synthetic Control Method for Nonlinear Models With High-Dimensional Covariates65 / 69



Empirical Example

Empirical Example

Finally, I need to mention about the computing time issue as mentioned
earlier.

In the conventional SCM, we need to calculate a 2490× 1 vector of
weights for each treated unit, so that this is computationally
expensive.
Indeed, our computing is carried out on a IBM X3550M4 dual
processors server equipped with Twenty-Four Core Intel Xeon E5-2620
v2 @ 2.10GHz CPU, 64 GB RAM running Windows Server 2019.
Using parallel computing in R language, it takes 1.69 hours to
compute the conventional SCM estimate. Whereas, given a selected
bandwidth, the computation time for our QSCM estimate is 13.6
seconds without parallel computation. Besides, as pointed out by
Abadie and L’Hour (2021), the minimizer of (2) may not be unique
with many treated units and/or many control units. Therefore, to
search for the minimizer of (2), the computing is heavy.
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Conclusion

To overcome the shortcomings of the conventional synthetic control
method, we propose a quasi synthetic control method, which can
accommodate nonlinearity and feature fast computing.

To address sparsity and variable selection, we propose to use the SCAD
method to deal with a diverging number of covariates. And when the
number of covariates is greater than the sample size, we suggest using a
robust sure independence screening procedure based on the distance
correlation to reduce the dimensionality first.

We provide the inference theory for the QSC method, and derive the
asymptotic distribution of the QSC ATE estimators with and without a
penalty term.

We also propose a carefully designed and easy-to-implement Bootstrap
method and establish the validity of the subsampling method for inference.
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THANKS

THANK YOU AGAIN for the INVITATION!

THANK YOU for YOUR ATTENTION!
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